
The ins and outs of Client-side XSS
Martin Johns
m.johns@tu-braunschweig.de
SecAppDev 2019

IAS - Web Security

Me, myself and I

!2

• Prof. Dr. Martin Johns
• TU Braunschweig, Institute for Application Security (IAS)
• Since April 2018

• Before rejoining the wonderful world of academia (2009 - 2018)
• 9 years at SAP Security Research, Germany
• Lead for application and web security research

• PhD on Web Security at University of Passau (2004 - 2009)

• Tons of development jobs during the Web 2.0 times (1998 - 2003)

IAS - Web Security

Same-Origin Policy in Action

!3

http://kittenpics.org

IAS - Web Security

Same-Origin Policy in Action

!3

http://kittenpics.org

https://gmail.com

IAS - Web Security

Same-Origin Policy in Action

!3

http://kittenpics.org

https://gmail.com

IAS - Web Security

Same-Origin Policy in Action

!3

http://kittenpics.org

https://gmail.com

IAS - Web Security

Same-Origin Policy in Action

!3

http://kittenpics.org

https://gmail.com

IAS - Web Security

Same-Origin Policy in Action

!3

http://kittenpics.org

https://gmail.com

IAS - Web Security

Same-Origin Policy in Action

!3

http://kittenpics.org

https://gmail.com

IAS - Web Security

Bypassing the SOP with Code Injection

!4

http://kittenpics.org

https://gmail.com

IAS - Web Security

Bypassing the SOP with Code Injection

!4

http://kittenpics.org

https://gmail.com

IAS - Web Security

Bypassing the SOP with Code Injection

!4

http://kittenpics.org

https://gmail.com

IAS - Web Security

Bypassing the SOP with Code Injection

!4

http://kittenpics.org

https://gmail.com

IAS - Web Security

Cross-Site Scripting

!5

• Attacker can inject his own script into another site (cross-site)
• actually, might have to inject HTML markup
• ... which contains JavaScript code

• Injected code runs in origin of vulnerable page

• Has roughly two orthogonal dimensions
• Location of vulnerable code (server or client)
• Persistence of attack payload (reflected or persistent)

IAS - Web Security

XSS Examples

!6

IAS - Web Security

XSS Examples

!6

• Tag injection

IAS - Web Security

XSS Examples

!6

• Tag injection Hello $user

IAS - Web Security

XSS Examples

!6

• Tag injection Hello $userHello <script>...</script>

IAS - Web Security

XSS Examples

!6

• Tag injection

• Breaking out of attributes

Hello $userHello <script>...</script>

IAS - Web Security

XSS Examples

!6

• Tag injection

• Breaking out of attributes

Hello $userHello <script>...</script>

IAS - Web Security

XSS Examples

!6

• Tag injection

• Breaking out of attributes

Hello $userHello <script>...</script>

IAS - Web Security

XSS Examples

!6

• Tag injection

• Breaking out of attributes

• JavaScript-URLs  
 

Hello $userHello <script>...</script>

IAS - Web Security

XSS Examples

!6

• Tag injection

• Breaking out of attributes

• JavaScript-URLs  
 

Hello $userHello <script>...</script>

<iframe src="$mysite">

IAS - Web Security

XSS Examples

!6

• Tag injection

• Breaking out of attributes

• JavaScript-URLs  
 

Hello $userHello <script>...</script>

<iframe src="$mysite"><iframe src="javascript:...">

IAS - Web Security

XSS Examples

!6

• Tag injection

• Breaking out of attributes

• JavaScript-URLs  
 

• In-script injection

Hello $userHello <script>...</script>

<iframe src="$mysite"><iframe src="javascript:...">

IAS - Web Security

XSS Examples

!6

• Tag injection

• Breaking out of attributes

• JavaScript-URLs  
 

• In-script injection

Hello $userHello <script>...</script>

<iframe src="$mysite"><iframe src="javascript:...">

<script>
var a = $foo;
</script>

IAS - Web Security

XSS Examples

!6

• Tag injection

• Breaking out of attributes

• JavaScript-URLs  
 

• In-script injection

Hello $userHello <script>...</script>

<iframe src="$mysite"><iframe src="javascript:...">

<script>
var a = $foo;
</script>

<script>
var a = a; evilcode();
</script>

IAS - Web Security

Impact of Cross-Site Scripting vulnerabilities

!7

• JavaScript has in the contexts of its document powerful capabilities
• Full control over the documents DOM
• Full access to the associated browser state
• Read/write HTTP requests to targets within the SOP

IAS - Web Security

Impact of Cross-Site Scripting vulnerabilities

!7

• JavaScript has in the contexts of its document powerful capabilities
• Full control over the documents DOM
• Full access to the associated browser state
• Read/write HTTP requests to targets within the SOP

• This allows JavaScript execution allows attacker to pretend to be
• ... user towards the server (e.g., posting content in social network)
• ... server towards the user (e.g., by modifying the look of a page

IAS - Web Security

XSS — a server-side problem

!8

• XSS was initially “discovered” in 2000
• Even though the actual vulnerability is probably as old as dynamic web pages

• In the mid-2000s XSS is high on the radar
• Both in the academic as well as the practitioner’s communities
• E.g., thanks to the efforts of OWASP

• However, XSS is perceived to be a security problem caused by server-side code
• HTML is assembled on the server
• Attacker data is used insecurely in this process
• The attacker is able to insert his own markup / JavaScript

• Thus, all proposed defences focused on server-side code

The rise of JavaScript

IAS - Web Security

Google.com in the year 2000

!10

IAS - Web Security

Google.com in the year 2019

!11

• …this goes on for another 290 lines of code

IAS - Web Security

1997 2002 2007 2012
0%

20%

40%

60%

80%

100% JavaScript

Flash

Java

Silverlight

Technologies used by the top 500 sites

!12

IAS - Web Security

JavaScript code size on the rise

!13

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

200

400

600

800

Average statements per external script

IAS - Web Security

JavaScript code complexity on the rise

!14

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

100

200

300

Average cyclomatic complexity per external script

IAS - Web Security

Multiple parties contribute JavaScript code

!15

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

2

4

6

8

10

12 Average included domains

Client-side XSS

IAS - Web Security

A (mostly) overlooked facet of XSS

!17

IAS - Web Security

A (mostly) overlooked facet of XSS

!17

• We push more and more JavaScript code to the browser

IAS - Web Security

A (mostly) overlooked facet of XSS

!17

• We push more and more JavaScript code to the browser

• This JavaScript can
• create new HTML code
• introduce new DOM elements
• convert strings into JavaScript code

IAS - Web Security

A (mostly) overlooked facet of XSS

!17

• We push more and more JavaScript code to the browser

• This JavaScript can
• create new HTML code
• introduce new DOM elements
• convert strings into JavaScript code

• Thus, has all means necessary to create XSS problems

IAS - Web Security

A (mostly) overlooked facet of XSS

!17

• We push more and more JavaScript code to the browser

• This JavaScript can
• create new HTML code
• introduce new DOM elements
• convert strings into JavaScript code

• Thus, has all means necessary to create XSS problems

• This problem was initially discussed by Amit Klein in 2005
• “DOM Based Cross Site Scripting or XSS of the Third Kind”
• …however only little attention was paid to this vulnerability class

IAS - Web Security

How do XSS problems occur?

!18

• XSS is always rooted in an insecure data flow
• The adversary’s attack payload enters the application as a string through a source
• It traverses the application without proper sanitization
• It ends up in a sink API, which transforms the attacker’s string into computer code

• i.e., into HTML or JavaScript

• So, what are the sources and sinks of client-side XSS?

IAS - Web Security

Sinks for Client-Side Cross-Site Scripting

!19

• document.write, document.writeln

• Can write new script tags which will be executed

• eval, setTimeout, setInterval

• Directly executes JavaScript code

• innerHTML, outerHTML

• will not execute script elements, but event handlers work
•  

• document.location and other URL attribute

• Script execution via javascript:-URLs

IAS - Web Security

Library sinks for client-side XSS

!20

• Nowadays, only few people still write “vanilla” JavaScript

• Instead, using JavaScript frameworks and libraries is commonplace

• Especially relevant in this context is JQuery
• Most notably the .html() API
• Unlike the DOM’s innerHTML API $.html even executes <script>-tags

• Old versions of JQuery even contained unintended CXSS
• Queries for non-existing elements created such elements
• Thus, $(location.hash) could cause JS injection

IAS - Web Security

Sources in Client-side XSS

!21

• A XSS source is controlled by the attacker
• Only few entry points for attacker data in the browser

• document.location and it’s aliases
• Especially the URL query and hash-part

• window.name
• Can be set for new windows and frames
• Retains its value after cross-origin navigation

• document.referer
• Requires cross-origin navigation

• Data in postmessage events

Web Security

1. Attacker analyzes client-side
JavaScript code for
vulnerabilities

• searches for unfiltered usage of
attacker-controllable data (e.g., the
URL)

• such data may be contained in URL
fragment
• Important: the fragment is not sent

to the server

!22

Attack scenario

ht
tp
:/
/e
xa
mp
le
.o
rg
/

<h
tm
l>
..
.

<s
cr
ip
t>
vu
ln
()
;<
/s
cr
ip
t>

..
.<
/h
tm
l>

Web Security

2. Attacker tricks victim into
visiting URL with payload, e.g., in
fragment
• Vulnerable JavaScript is delivered to

client
• Vulnerable JavaScript accesses the

attacker controlled data
• Exploit triggered

• Potentially without payload being
sent to server (if in fragment)

!23

Attack scenario

http://example.org/# 
<script>attack()</script>

Web Security

2. Attacker tricks victim into
visiting URL with payload, e.g., in
fragment
• Vulnerable JavaScript is delivered to

client
• Vulnerable JavaScript accesses the

attacker controlled data
• Exploit triggered

• Potentially without payload being
sent to server (if in fragment)

!23

Attack scenario

http://example.org/# 
<script>attack()</script>

<html>... 

<script>vuln()</script> 

..</html>
http://example.org/

IAS - Web Security

Reasons why client-side XSS flew under the radar

!24

IAS - Web Security

Reasons why client-side XSS flew under the radar

!24

• A XSS source partially or fully controlled by the attacker

IAS - Web Security

Reasons why client-side XSS flew under the radar

!24

• A XSS source partially or fully controlled by the attacker

• In case of server-side XSS, the application scenario mandates the direct
interaction with the attacker’s data
• Source: HTTP request
• Sink: HTTP response

IAS - Web Security

Reasons why client-side XSS flew under the radar

!24

• A XSS source partially or fully controlled by the attacker

• In case of server-side XSS, the application scenario mandates the direct
interaction with the attacker’s data
• Source: HTTP request
• Sink: HTTP response

• This is not the case with client-side XSS
• No mandatory case why the (very limited) amount of sources should influence the various sinks
• …actually, why would you want to do this?

IAS - Web Security

Study: Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!25

IAS - Web Security

Study: Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!25

• Recall: JavaScript is highly dynamic
• sound static analysis pretty much dies with eval()
• prototype chaining increases difficulty even further

IAS - Web Security

Study: Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!25

• Recall: JavaScript is highly dynamic
• sound static analysis pretty much dies with eval()
• prototype chaining increases difficulty even further

• On abstract level, XSS is insecure data flow
• from attacker-controllable sources

• e.g., URL, referrer, cookies, window.name, postMessage, ...
• to security-critical sinks

• e.g., document.write (writes HTML), eval (executes JavaScript), ...

IAS - Web Security

Study: Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!25

• Recall: JavaScript is highly dynamic
• sound static analysis pretty much dies with eval()
• prototype chaining increases difficulty even further

• On abstract level, XSS is insecure data flow
• from attacker-controllable sources

• e.g., URL, referrer, cookies, window.name, postMessage, ...
• to security-critical sinks

• e.g., document.write (writes HTML), eval (executes JavaScript), ...

• We can use dynamic analysis for detection
• precisely: taint tracking

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!26

• We implemented byte-level tainting in Chromium
• able to taint strings, understand usage of encoding functions
• on access to security-critical sink, string and taint info reported to backend

• Conducted large-scale study on data flows
• Alexa Top 5000 shallow crawl
• 504,275 URLs, 4,358,031 frames in total
• 24,474,306 data flows

• only JavaScript/HTML flows: 4,948,264
• only directly controllable sources: 1,825,598
• only unfiltered flows: 313,794

Extension

 V8 JS eval report

 WebKit document.write

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!27

• Not every unencoded flow is vulnerable
<script>
 if (/^[a-z][0-9]+$/.test(location.hash.slice(1)) {
 document.write(location.hash.slice(1));
 }
</script>

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!27

• Not every unencoded flow is vulnerable

• http://example.org/#top

• measurable data flow

<script>
 if (/^[a-z][0-9]+$/.test(location.hash.slice(1)) {
 document.write(location.hash.slice(1));
 }
</script>

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!27

• Not every unencoded flow is vulnerable

• http://example.org/#top

• measurable data flow
• http://example.org/#<script>alert(1)</script>

• does not pass regular expression

<script>
 if (/^[a-z][0-9]+$/.test(location.hash.slice(1)) {
 document.write(location.hash.slice(1));
 }
</script>

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!27

• Not every unencoded flow is vulnerable

• http://example.org/#top

• measurable data flow
• http://example.org/#<script>alert(1)</script>

• does not pass regular expression

<script>
 if (/^[a-z][0-9]+$/.test(location.hash.slice(1)) {
 document.write(location.hash.slice(1));
 }
</script> Approach:  

Verify v
ulnerabilities via

successful exploits

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!28

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!28

• Exploitation is dependent on the context

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!28

• Exploitation is dependent on the context
• HTML context requires <script> tags
document.write("<input value='"  
 + location.hash.slice(1) + "'>");

'><script>alert(1);</script><textarea>

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!28

• Exploitation is dependent on the context
• HTML context requires <script> tags

• JavaScript context only requires new JavaScript statements

document.write("<input value='"  
 + location.hash.slice(1) + "'>");

'><script>alert(1);</script><textarea>

eval("var x = '" + location.hash + "'"); '; alert(1);//

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!28

• Exploitation is dependent on the context
• HTML context requires <script> tags

• JavaScript context only requires new JavaScript statements

• URL context requires javascript: URL

document.write("<input value='"  
 + location.hash.slice(1) + "'>");

'><script>alert(1);</script><textarea>

eval("var x = '" + location.hash + "'"); '; alert(1);//

var frame = document.createElement("iframe");
frame.src = location.hash.slice(1) + "/test.html";

javascript:alert(1);//

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

'><script>alert(1);</script><textarea>

'; alert(1);//

javascript:alert(1);//

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

'><script>alert(1);</script><textarea>

'; alert(1);//

javascript:alert(1);//

Break-Out

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

'><script>alert(1);</script><textarea>

'; alert(1);//

javascript:alert(1);//

ExploitBreak-Out

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

'><script>alert(1);</script><textarea>

'; alert(1);//

javascript:alert(1);//

Exploit Break-InBreak-Out

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

• Break-Out depends on context and point of injection

• Exploit is same regardless of context/injection

• Break-In only depends on the context

'><script>alert(1);</script><textarea>

'; alert(1);//

javascript:alert(1);//

Exploit Break-InBreak-Out

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

function test() {
 var x = "http://example.org/test.html";

 doSomething(x);
}

location.href

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

function test() {
 var x = "http://example.org/test.html";

 doSomething(x);
}

location.href

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

function test() {
 var x = "http://example.org/test.html";

 doSomething(x);
}

location.href

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

function test() {
 var x = "http://example.org/test.html";

 doSomething(x);
}

location.href

• End string literal: "

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

function test() {
 var x = "http://example.org/test.html";

 doSomething(x);
}

location.href

• End string literal: "
• End declaration ;

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

function test() {
 var x = "http://example.org/test.html";

 doSomething(x);
}

location.href

• End string literal: "
• End declaration ;
• End block }

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

function test() {
 var x = "http://example.org/test.html";

 doSomething(x);
}

location.href

• End string literal: "
• End declaration ;
• End block }
• Exploit alert(1);

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

function test() {
 var x = "http://example.org/test.html";

 doSomething(x);
}

location.href

• End string literal: "
• End declaration ;
• End block }
• Exploit alert(1);
• Break-In //

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!30

var code = 'function test(){'
 + 'var x = "' + location.href + '";'
 //inside function test
 + 'doSomething(x);'
 + '}';
 //top level
 eval(code);

function test() {
 var x = "http://example.org/test.html";

 doSomething(x);
}

location.href

• End string literal: "
• End declaration ;
• End block }
• Exploit alert(1);
• Break-In //
• Final exploit: ";} alert(1); //

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!31

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!31

Domains

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!31

Domains

Taint Reports

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!31

Exploit
Generator

Domains

Taint Reports
Taint Reports

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!31

Exploit
Generator

Domains

Taint Reports
Taint Reports

Exploit URLs

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!31

Exploit
Generator

Domains

Taint Reports
Taint Reports

Exploit URLs
Exploit URLs

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!31

Exploit
Generator

Domains

Taint Reports
Taint Reports

Exploit URLs
Exploit URLs

Verified
Exploitability

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!32

• Conducted large-scale study on data flows
• Alexa Top 5000 shallow crawl
• 504,275 URLs, 4,358,031 frames in total
• 24,474,306 data flows

• only JavaScript/HTML flows: 4,948,264
• only directly controllable sources: 1,825,598
• only unfiltered flows: 313,794

Control'backend'

Background'script'

Tab'1'

content''
script'

Web'
page'

''

&'
'

user'
script'

Tab'n'

content''
script'

Web'
page'

''

&'
'

user'
script'…'

Background'script'

Tab'1'

content''
script'

Web'
page'

''

&'
'

user'
script'

Tab'n'

content''
script'

Web'
page'

''

&'
'

user'
script'…'…'

Browser'1' Browser'm'

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!32

• Conducted large-scale study on data flows
• Alexa Top 5000 shallow crawl
• 504,275 URLs, 4,358,031 frames in total
• 24,474,306 data flows

• only JavaScript/HTML flows: 4,948,264
• only directly controllable sources: 1,825,598
• only unfiltered flows: 313,794

• 181,238 unique test cases
• others were duplicate combinations of URLs + payloads

Control'backend'

Background'script'

Tab'1'

content''
script'

Web'
page'

''

&'
'

user'
script'

Tab'n'

content''
script'

Web'
page'

''

&'
'

user'
script'…'

Background'script'

Tab'1'

content''
script'

Web'
page'

''

&'
'

user'
script'

Tab'n'

content''
script'

Web'
page'

''

&'
'

user'
script'…'…'

Browser'1' Browser'm'

IAS - Web Security

Detecting Reflected Client-Side Cross-Site Scripting [CCS13]

!32

• Conducted large-scale study on data flows
• Alexa Top 5000 shallow crawl
• 504,275 URLs, 4,358,031 frames in total
• 24,474,306 data flows

• only JavaScript/HTML flows: 4,948,264
• only directly controllable sources: 1,825,598
• only unfiltered flows: 313,794

• 181,238 unique test cases
• others were duplicate combinations of URLs + payloads

• 69,987 successful exploits
• affected 701 domains in total
• ... and 480 in top 5000 domains

Control'backend'

Background'script'

Tab'1'

content''
script'

Web'
page'

''

&'
'

user'
script'

Tab'n'

content''
script'

Web'
page'

''

&'
'

user'
script'…'

Background'script'

Tab'1'

content''
script'

Web'
page'

''

&'
'

user'
script'

Tab'n'

content''
script'

Web'
page'

''

&'
'

user'
script'…'…'

Browser'1' Browser'm'

IAS - Web Security

So, we learned that CXSS is very common

!33

IAS - Web Security

So, we learned that CXSS is very common

!33

• But, why?

IAS - Web Security

So, we learned that CXSS is very common

!33

• But, why?

IAS - Web Security

So, we learned that CXSS is very common

!33

• But, why?

• Theory one:
• JavaScript is written by frontend developers
• Frontend dev lack the security background and cause obvious mistakes

IAS - Web Security

So, we learned that CXSS is very common

!33

• But, why?

• Theory one:
• JavaScript is written by frontend developers
• Frontend dev lack the security background and cause obvious mistakes

• Theory two:
• Compared to other execution environments, JavaScript in web documents is overly complex

• Fragmented over the document
• Comes from multiple sources
• Relies on dynamic code generation
• Non-linear control-flow through event driven concurrency model

IAS - Web Security

Study 2: Going deeper into CXSS [CCS15]

!34

• Methodology: Advanced taint browser
• Firefox-based implementation

• New capabilities
• Recording of all string operations on the tainted data
• Full function-tracing

• For the full flow from source to sink
• Including call relation ships

• Tracking of involved code contexts
• Each <script> tag spans it’s own code context

IAS - Web Security

Measurable properties of JS complexity [CCS15]

!35

• How can we measure “complexity”?
• i.e., how difficult would it be for a human to spot the  

vulnerability?

• Metrics:
• M1: Number of Operations on the Tainted Data
• M2: Number of Involved Functions
• M3: Number of Involved Contexts
• M4: Code Locality of Source and Sink
• M5: Callstack Relation between Source and Sink

string, the number of functions that are traversed is another
indicator for the complexity of a flow or a vulnerability.

We therefore define our second metric, M2, to count the
number of functions which are passed between source and
sink access. Although all code may also reside in the top
execution level, i.e., not specifically within defined functions
but rather in a virtual main function, the minimum number
of traversed functions must always be one. In this context,
we define the virtual main to be the main JavaScript ex-
ecution thread which executes all inline script blocks and
external JavaScript files.

3.1.3 Number of Involved Contexts

The Web’s model allows for JavaScript files to be included
from other sites, while inheriting the including page’s origin
and, thus, running in that origin. Therefore, a single Java-
Script block or file is not executed independently, but within
a Web page possible containing tens of other JavaScript re-
sources, potentially stemming from other domains and de-
velopers. The main interaction point of all these scripts is
the global object, in the case of the browser the window ob-
ject. Since all script elements within a Web page may gain
access to that object, di↵erent snippets may register global
variable or functions to allow for interaction with other parts
of the executed code.

In our notion, we call each of these script elements, which
the analyst has to fully understand to decide whether a flow
might be vulnerable, contexts. Thus, we define our third
metric, M3, to count the number of contexts which are tra-
versed in the execution of a vulnerable JavaScript program
between source and sink.

3.1.4 Code Locality of Source and Sink

In order to understand that a certain flow constitutes a
vulnerability, an analyst has to inspect all the code between
the source and respective sink access. Naturally, this is eas-
ier if not only the number of operations that are conducted
is low, but also both source- and sink-accessing operations
are within a smaller number of lines of code. In contrast,
even if the number of operations is low, a vulnerability is
harder to detect if source and sink access are further apart
in the code, as the analyst has to specifically search for the
tainted variables to be used again.

Thus, as a fourth metric, M4, we measure the amount
of code between source and sink access. This metric, how-
ever, can only be applied to vulnerabilities flow which the
source and sink access is conducted within the same file, i.e.,
either within two inline script blocks or the same external
JavaScript file.

3.1.5 Callstack Relation between Source and Sink

Another property that increases the perceived complexity
when dealing with potentially vulnerable JavaScript code
is the relation between source and sink access in the call
stack. As discussed before, the code responsible for an ex-
ploitable flaw might be spread across multiple functions or
contexts, i.e., source and sink access do not have to be con-
tained within the same function or context.

In the easiest case, access to the source and sink is con-
ducted within the same function, i.e., on the same level in
the call stack. Figure 1 shows the di↵erent relations between
these two operations with respect to the sink access being

conducted in the red script element SE #3. For our first
relation, R1, the source access also occurs in this element.
The second scenario occurs when the source access is con-

ducted in the blue script element SE #1. In this case, the
tainted data is passed as a parameter to the function the
sink access resides in. From an analyst’s perspective, this
means that he can follow the flow of data from the source to
the function. He can subsequently analyze the function with
the knowledge that the passed parameter contains tainted
and unfiltered data, allowing him to decide whether the fol-
lowing sink access can be deemed safe or not. We refer to
this callstack relation as R2.
In contrast to the previous case, the source access may

also occur in an element which is lower in the callstack than
the sink access. This is depicted in Figure 1 when the source
access occurs in the yellow SE #4. In such a case, the ana-
lyst has to follow the called function to determine that user-
provided data is accessed before having to go up to SE #3
again to see how the tainted data is handled. This compli-
cates the analysis, since it requires a switch back and forth
between functions, and potentially contexts/files. We deem
this to be R3.
As a fourth scenario, we identify snippets of code in which

source and sink only share a common ancestor in the call-
stack, but neither are parents of the other in the callstack.
Figure 1 shows this for a source access in the orange ele-
ment SE #2, which shares the common parent SE #1 with
the sink-accessing SE #3. The increased complexity in this
scenario stems from the fact that the analyst must first in-
vestigate the function which accesses the source, continue
his analysis of the common parent, and then decent into the
sink-accessing function. We denote this relation to be R4.
Finally, the most complex type of flows occurs if source

and sink access share no common ancestors apart from the
virtual main function. This is enabled by the fact that all
JavaScript operates on the same global object, i.e., may set
global variables accessible by any other snippet of JS running
on the same Web page. This is shown in Figure 1 when
accessing the source in the purple SE #0. Hence, there is no
path of code an analyst can follow between source and sink
access. Instead, he has to understand that the first script
element accesses the source and stores the retrieved value
in a global variable, and that in turn the second element
accesses this stored value before passing it to the sink. In
our notion, this is callstack relation R5.

Figure 1: Relations between source and sink access

IAS - Web Security

M5: Relation 1 [CCS15]

!36

<script>
var source = location.href;
...
document.write(source);
</script>

IAS - Web Security

M5: Relation 5 [CCS15]

!37

<script>
var global = location.href;
...
</script>
...

<script>
eval(global);
</script>

IAS - Web Security

Normalizing the Data Set [CCS15]

!38

• Data set: 1,273 real-world vulnerabilities
• many of them minified
• Causes issues with metrics
• many of them not stable (e.g. banner rotation)

• Need to be normalized for a sound analysis
• Local cache-based vulnerability persistence architecture
• Allow repeatable experiments

Cache

Beautified
Proxy Post-processing Analysis

IAS - Web Security

Results [CCS15]

!39

• M1: Number of Operations on the Tainted Data
• M2: Number of Involved Functions
• M3: Number of Involved Contexts
• M4: Code Locality of Source and Sink
• M5: Callstack Relation between Source and Sink

As we discussed beforehand, both code and data flows may
occur in a non-linear manner. Table 1 shows the distribu-
tion of this feature in our data set. Note, that a linear data
flow cannot occur with a non-linear control flow, since this
implies no relation between source and sink accessing opera-
tions. We observe that 59 cases, which are also matched by
R5, both data and control flow are non-linear. In addition,
we found that in 98 of the vulnerable flows, a non-linear data
flow occured, i.e., the data was not passed as a parameter
to all functions it traversed.

In terms of code origin, our analysis revealed interesting
results. While the biggest fraction, namely 835 vulnerabil-
ities, was caused purely by self-hosted code, we found that
273 flaws were contained exclusively in third-party scripts,
leaving the Web page exposed to a Cross-Site Scripting flaw
to no fault of its developer. The remaining 165 flaws oc-
curred in a combination of self-hosted and third-party code.

An attacker may leverage a single sink access which con-
tains more than one attacker-controllable piece of data to
circumvent popular Cross-Site Scripting filters [27]. There-
fore, an additional characteristic is whether a flaw consti-
tutes a multiflow, which we discovered in 344 of the exploited
Web pages.

Although the sink in which the vulnerable flow of data
ended is not directly related to the complexity of the vulner-
ability itself, it is relevant for remedies, as di↵erent filtering
steps must be taken depending on the type of sink. In our
study, we found that 732 exploitable flows ended in doc-
ument.write, 495 in innerHTML and remaining 46 in eval
and its derivatives.

In addition to eval being a sink, we also observed flows
in which it was used to generate code, which was ultimately
responsible for a flow, at runtime. In total, only eleven of
such cases were contained in our data, while the most com-
mon scenario was deobfuscation of code at runtime, e.g., by
base64-decoding it.

5.4 Analysis
In Section 3.1, we defined a set of metrics to measure

the complexity of a vulnerable flow, which we then applied
to a set of real-world vulnerabilities in our study. To bet-
ter quantify the complexity of a flaw, we need to translate
the numeric values derived by our metrics into a classify-
ing scheme. In the following, we introduce the classification
boundaries for these measures; based on these boundaries,
we then classify each of the vulnerable flows in our data set
to either have a low, medium or high complexity with re-
spect to each metric. Finally, we combine the classification
results and highlight the necessity for a multi-dimensional
classification scheme.

Classification Scheme: Based on the gathered data of
all metrics, we derive the 80th and 95th percentiles, i.e.,

LCF NLCF Sum

LDF 1,116 — 1,116
NLDF 98 59 157

Sum 1,214 59 1,273
Table 1: Data and code flow matrix

Figure 9: Cumulative Sum for M1 (string-accessing ops)

Figure 10: Cumulative Sum for M2 (number of functions)

derive the numbers for which at least 80% and 95% of all
vulnerable flows have a lower metric value, respectively. For
M1 and M2, the cumulative sums are depicted in Figures 9
and 10, highlighting also both the percentiles. Although
metric M5, which denotes the relation of source and sink
accessing operations, does not return a numerical value, the
perceived complexity rises with the identifier, i.e., R2 is more
complex than R1 and so on and so forth. For this metric,
more than 80% of the flows were contained in the relation
classes R1 and R2 and less than 5% of the flows were made
up out of flows which had no relation between source and
sink (R5).
We use the resulting percentiles as cut-o↵ points for our

complexity metric classification. Therefore, we set bound-
aries for all of our metrics accordingly (as depicted in Ta-
ble 2), such that any value maps to either a low (LC),
medium (MC) or high (HC) complexity. We calculate the
overall complexity of a flaw from the single highest rating
by any metric; this appeals naturally to the fact that a vul-
nerable flow is already hard to understand if it is complex
in just a single dimension.

Classification Results: Based on our classification scheme,
we categorize each of the flaws in our data set to a com-
plexity class. The results of this classification scheme are
depicted in Table 3, where CMX denotes the results for MX.
Although the boundaries were derived from the 80th and
95th percentile, the results (especially forM2) are not evenly
distributed. This stems from the fact that the boundaries
are a fixed value which denotes that at least 80% or 95% of

LC MC HC

M1 9 22 >22
M2 4 10 >10
M3 2 3 >3
M4 75 394 >394
M5 R1, R2 R3, R4 R5

Table 2: Classification boundaries

LC MC HC

CM1 1,079 134 60
CM2 1,161 85 27
CM3 1,035 178 60
CM4 920 179 51
CM5 1,094 120 59

Combined 813 261 199
63.9% 20.5% 15.6%

Table 3: Classification by applied metrics

the flows had a lower ranking, not necessarily exactly that
number. Note also that M4 can only be applied to subset
of 1.150 of the flows in our data set, as only in these cases
source and sink access were contained within the same file.

By design, each of our metrics assigns at least 80% of the
flaws to lowest complexity class. The results of the combina-
tion of all metrics is also shown in Table 3: we observe that
in combining the result, less than two thirds of the flows are
categorized as having an overall low complexity, i.e., that
for each metric their value was below the 80th percentile.
This highlights the fact that while a flow might be simple in
terms of a single metric, flows are actually more complex if
all metrics are evaluated, putting emphasis on the di↵erent
proposed metrics.

5.5 Summary of Our Findings
In summary, by grouping the results from each of the met-

rics, separated by the 80th and 95th percentile, and combin-
ing the resulting classifications into either low, medium or
high complexity, about two thirds of our data set is still la-
beled as having a low complexity, whereas 20% and 15% of
the flows are labeled as having a medium or high complex-
ity, respectively. This shows that taking into account only
a single metric is not su�cient to ascertain the complexity
of a vulnerability, but that rather all dimensions must be
analyzed. Given the large fraction of simple flows, which
consist of at most nine operations on the tainted data (in-
cluding source and sink access) and span no more than two
contexts, we ascertain that Client-Side Cross-Site Scripting
is often caused by developers who are unaware of the risks
and pitfalls of using attacker-controllable data in an unfil-
tered manner.

Although the fraction of straight-forward vulnerabilities
is very high, the unawareness of developers is only one root
cause of Client-Side Cross-Site Scripting. As this section has
shown, developers may also be overwhelmed by the sheer
amount code they have to understand, potentially passing
first- and third-party code on the way. In addition, we found
273 cases in which the vulnerability was contained strictly
inside third-party code and, thus, the developer of the then
vulnerable application was not at fault.

5.6 Comparison to Randomly-Sampled Flows
From our data set, we gathered a large number of flows

which appeared to be vulnerable, but did not trigger our
payload. We can, however, not state with certainty that
these flows were indeed secure. For instance, the applied
filtering might be incomplete, a condition that is not covered
by our exploit generator. Therefore, to put the results of
our study into perspective, we randomly sampled 1.273 flows

80th 95th 100th

M1 20 44 >44
M2 9 19 >19
M3 2 3 >3
M4 189 1,208 >1,208
M5 R1, R2, R3 R4 R5

Table 4: Percentiles for randomly-sampled flows

from an attacker-controllable sink to a direct execution sink.
Table 4 shows the results for the percentiles of these flows.
Interestingly, the percentile values are higher for each of the
metrics compared to vulnerable flows. This shows that the
complexity of such flows alone can not be the causing factor
for the widespread occurrence of client-side XSS.

6. ADDITIONAL INSIGHTS
Our analysis so far uncovered that the biggest fraction

of vulnerabilities are caused by programming errors which,
according to the results of our metrics, should be easy to
spot and correct. We conducted a more detailed analysis
into several low complexity flaws as well as those flaws which
were ranked as having a high complexity and found a number
of interesting cases, which shed additional light on the issues
that cause client-side XSS. Therefore, in the following, we
highlight four di↵erent insights we gained in our analysis.

6.1 Involving Third Parties
In our analysis, we found that vulnerabilities were also

caused when involving code from third parties, either be-
cause first- and third-party code were incompatible or be-
cause a vulnerable library introduced a flaw.

Incompatible First- and Third-Party Code: A more
complex vulnerability, which was rated as being of medium
complexity forM3 and high complexity byM5, utilized meta
tags as a temporary sink/source. Listing 2 shows the code,
which extracts the URL fragment and stores it into a newly
created meta element called keywords. Since this code was
found in an inline script, we believe that it was put there
with intend by the page’s programmer.

var parts = window.location.href.split("#");

if (parts.length > 1) {

var kw = decodeURIComponent(parts.pop());

var meta = document.createElement(’meta’);

meta.setAttribute(’name’, ’keywords’);

meta.setAttribute(’content’, kw);

document.head.appendChild(meta);

}

Listing 2: Creating meta tags using JavaScript

This page also included a third-party script, which for the
most part consisted of the code shown in Listing 3. This code
extracts data from the meta tag and uses it to construct a
URL to advertisement. In this case, however, this data is
attacker-controllable (originating from the URL fragment)
and thus this constitutes a client-side XSS vulnerability.
This code is an example for a vulnerability which is caused
by the combination of two independent snippets, highlight-
ing the fact that the combined use of own and third-party
code can significantly increase complexity and the potential

IAS - Web Security

Interpretation [CCS15]

!40

IAS - Web Security

Interpretation [CCS15]

!40

• Are developers overwhelmed by the complexity of flows?
• ~15% complex flows

IAS - Web Security

Interpretation [CCS15]

!40

• Are developers overwhelmed by the complexity of flows?
• ~15% complex flows

• Are developers not aware of the pitfalls?
• Found evidence

• Explicit decoding
• Improper API usage
• Single line flaws

IAS - Web Security

Interpretation [CCS15]

!40

• Are developers overwhelmed by the complexity of flows?
• ~15% complex flows

• Are developers not aware of the pitfalls?
• Found evidence

• Explicit decoding
• Improper API usage
• Single line flaws

• Are there special circumstances in the Web model that cause such flaws?
• Third-party flaws cause vulnerability in including application
• Unstructured JS embedding in web documents leads to non-linear data/control flows

IAS - Web Security

Case example: Convoluted CXSS [CCS15]

!41

• First party inline script created HTML Meta tags from source data

•  

• A 3rd party, external script reads the meta tags and uses them for DOM
manipulation

LC MC HC

CM1 1,079 134 60
CM2 1,161 85 27
CM3 1,035 178 60
CM4 920 179 51
CM5 1,094 120 59

Combined 813 261 199
63.9% 20.5% 15.6%

Table 3: Classification by applied metrics

the flows had a lower ranking, not necessarily exactly that
number. Note also that M4 can only be applied to subset
of 1.150 of the flows in our data set, as only in these cases
source and sink access were contained within the same file.

By design, each of our metrics assigns at least 80% of the
flaws to lowest complexity class. The results of the combina-
tion of all metrics is also shown in Table 3: we observe that
in combining the result, less than two thirds of the flows are
categorized as having an overall low complexity, i.e., that
for each metric their value was below the 80th percentile.
This highlights the fact that while a flow might be simple in
terms of a single metric, flows are actually more complex if
all metrics are evaluated, putting emphasis on the di↵erent
proposed metrics.

5.5 Summary of Our Findings
In summary, by grouping the results from each of the met-

rics, separated by the 80th and 95th percentile, and combin-
ing the resulting classifications into either low, medium or
high complexity, about two thirds of our data set is still la-
beled as having a low complexity, whereas 20% and 15% of
the flows are labeled as having a medium or high complex-
ity, respectively. This shows that taking into account only
a single metric is not su�cient to ascertain the complexity
of a vulnerability, but that rather all dimensions must be
analyzed. Given the large fraction of simple flows, which
consist of at most nine operations on the tainted data (in-
cluding source and sink access) and span no more than two
contexts, we ascertain that Client-Side Cross-Site Scripting
is often caused by developers who are unaware of the risks
and pitfalls of using attacker-controllable data in an unfil-
tered manner.

Although the fraction of straight-forward vulnerabilities
is very high, the unawareness of developers is only one root
cause of Client-Side Cross-Site Scripting. As this section has
shown, developers may also be overwhelmed by the sheer
amount code they have to understand, potentially passing
first- and third-party code on the way. In addition, we found
273 cases in which the vulnerability was contained strictly
inside third-party code and, thus, the developer of the then
vulnerable application was not at fault.

5.6 Comparison to Randomly-Sampled Flows
From our data set, we gathered a large number of flows

which appeared to be vulnerable, but did not trigger our
payload. We can, however, not state with certainty that
these flows were indeed secure. For instance, the applied
filtering might be incomplete, a condition that is not covered
by our exploit generator. Therefore, to put the results of
our study into perspective, we randomly sampled 1.273 flows

80th 95th 100th

M1 20 44 >44
M2 9 19 >19
M3 2 3 >3
M4 189 1,208 >1,208
M5 R1, R2, R3 R4 R5

Table 4: Percentiles for randomly-sampled flows

from an attacker-controllable sink to a direct execution sink.
Table 4 shows the results for the percentiles of these flows.
Interestingly, the percentile values are higher for each of the
metrics compared to vulnerable flows. This shows that the
complexity of such flows alone can not be the causing factor
for the widespread occurrence of client-side XSS.

6. ADDITIONAL INSIGHTS
Our analysis so far uncovered that the biggest fraction

of vulnerabilities are caused by programming errors which,
according to the results of our metrics, should be easy to
spot and correct. We conducted a more detailed analysis
into several low complexity flaws as well as those flaws which
were ranked as having a high complexity and found a number
of interesting cases, which shed additional light on the issues
that cause client-side XSS. Therefore, in the following, we
highlight four di↵erent insights we gained in our analysis.

6.1 Involving Third Parties
In our analysis, we found that vulnerabilities were also

caused when involving code from third parties, either be-
cause first- and third-party code were incompatible or be-
cause a vulnerable library introduced a flaw.

Incompatible First- and Third-Party Code: A more
complex vulnerability, which was rated as being of medium
complexity forM3 and high complexity byM5, utilized meta
tags as a temporary sink/source. Listing 2 shows the code,
which extracts the URL fragment and stores it into a newly
created meta element called keywords. Since this code was
found in an inline script, we believe that it was put there
with intend by the page’s programmer.

var parts = window.location.href.split("#");

if (parts.length > 1) {

var kw = decodeURIComponent(parts.pop());

var meta = document.createElement(’meta’);

meta.setAttribute(’name’, ’keywords’);

meta.setAttribute(’content’, kw);

document.head.appendChild(meta);

}

Listing 2: Creating meta tags using JavaScript

This page also included a third-party script, which for the
most part consisted of the code shown in Listing 3. This code
extracts data from the meta tag and uses it to construct a
URL to advertisement. In this case, however, this data is
attacker-controllable (originating from the URL fragment)
and thus this constitutes a client-side XSS vulnerability.
This code is an example for a vulnerability which is caused
by the combination of two independent snippets, highlight-
ing the fact that the combined use of own and third-party
code can significantly increase complexity and the potential

for an exploitable data flow. In this concrete case, the Web
application’s programmer wanted to utilize the dynamic na-
ture of the DOM to generate keywords from user input, while
the third-party code provider reckoned that meta tags would
only be controllable by the site owner.

function getKwds() {

var th_metadata = document.getElementsByTagName("meta");

...

}

var kwds = getKwds();

document.write(’<iframe src="...&loc=’ + kwds + ’"></iframe>’);

Listing 3: Third-party code extracting previously set meta
tags

Vulnerable Libraries: An example for a vulnerability
which was rated as being of low complexity is related to
a vulnerable version of jQuery. The popular library jQuery
provides a programmer with the $ selector to ease the access
to a number of functions inside jQuery, such as the selection
by id (using the # tag) as well as the generation of a new
element in the DOM when passing HTML content to it. Up
until version 1.9.0b1 of jQuery, this selector was vulnerable
to client-side XSS attacks [10], if attacker-controllable con-
tent was passed to the function—even if a # tag was hard-
coded in at the beginning of that string. Listing 4 shows
an example of such a scenario, where the intended use case
is to call the fadeIn function for a section whose name is
provided via the hash. This flaw could be exploited by an
attacker by simply putting his payload into the hash.

var section = location.href.slice(1);

$("#" + section + "_section").fadeIn();

Listing 4: Vulnerable code if used with jQuery before 1.9.0b1

In our study, we found that 25 vulnerabilities were caused
by this bug, although the vulnerability had been fixed for
over three years at time of writing this paper. In total, we
discovered that 472 of the exploited Web pages contained
outdated and vulnerable versions of jQuery, albeit only a
fraction contained calls to the vulnerable functions. jQuery
was accompanied by a number of vulnerable plugins, such
as jquery-ui-autocomplete (92 times). Second to jQuery
came the YUI library, of which vulnerable versions were
included in 39 exploited documents. This highlights that
programmers should regularly check third-party libraries for
security updates or only include the latest version of the li-
brary into their pages.

6.2 Erroneous Patterns
Apart from the involvement of third-party code which

caused vulnerabilities, we found two additional patterns that
highlight issues related to client-side XSS, namely the im-
proper usage of browser-provided APIs and the explicit de-
coding of user-provided data.

Improper API Usage: In our data set, we found a vul-
nerability in the snippet shown in Listing 5, which was as-
signed the lowest complexity score by any of our metrics. In
this case, the user-provided data is passed to the outlined
function, which apparently aims at removing all script tags

inside this data. The author of this snippet, however, made
a grave error. Even though the newly created div element
is not yet attached to the DOM, assigning innerHTML will
invoke the HTML parser. While any script tag is not exe-
cuted when passed to innerHTML [9], the attacker can pass a
payload containing an img with an error handler [15]. The
HTML parser will subsequently try to download the refer-
enced image and in the case of a failure, will execute the
attacker-provided JavaScript code. While the e↵ort by the
programmer is commendable, this filtering function ended
up being a vulnerability by itself. Next to this flaw, we
found examples of the improper use of built-in functions,
such as parseInt and replace.

function escapeHtml(s) {

var div = document.createElement(’div’);

div.innerHTML = s;

var scripts = div.getElementsByTagName(’script’);

for (var i = 0; i < scripts.length; ++i) {

scripts[i].parentNode.removeChild(scripts[i]);

}

return div.innerHtml;

};

Listing 5: Improper use of innerHTML for sanitization

Explicit Decoding of Otherwise Safe Data: As out-
lined in Section 4.3, the automatic encoding behavior of
data retrieved from the document.location source varies
between browsers: Firefox will automatically escape all com-
ponents of the URL, while Chrome does not encode the frag-
ment, and IE does not encode any parts of the URL. In con-
sequence, some insecure data flows may not be exploitable
in all browsers, with Firefox being the least susceptible of
the three, thanks to its automatic encoding.
The data set underlying our study was validated to be

exploitable if Chrome’s escaping behavior is present, which
leaves the fragment portion of the URL unaltered. Nev-
ertheless, we wanted to investigate how many vulnerabili-
ties would actually work in any browser, i.e., in how many
cases data was intentionally decoded before use in a security-
sensitive sink. Using an unmodified version of Firefox, we
crawled the persisted vulnerabilities again and found that
109 URLs still triggered our payload. This highlights the
fact that programmers are aware of such automatic encod-
ing, but simply decode user-provided data for convenience
without being aware of the security implications.

6.3 Summary of Our Insights
In summary, we find that although a large fraction of

all vulnerabilities are proverbial facepalms, developers are
often confronted with additional obstacles even in cases,
where the complexity is relatively low. In our work, we
have found evidence for faults which are not necessarily to
blame on the developer of the vulnerable Web application,
but rather are either a combination of incompatible first- and
third-party code or even caused completely by third-party
libraries. This paradigm is enabled by the Web’s program-
ming model, which allows for third-party code to be included
in a Web page, gaining full access to that page’s DOM.
In addition, we have found patterns of mistakes, which

are caused by developers due to their misunderstanding of
browser-provided APIs or even the explicit decoding of user-
provided data to allow for a convenient use of such data.

IAS - Web Security

Mutation-based XSS

!42

• Research result from the time of our first study
• New potential source for CXSS: The DOM (!)

• Observation: Certain browser APIs mutate values

• Idea: use error-tolerant parsing to bypass filtering techniques
• element.innerHTML = ''

• element.innerHTML ''

• On first parse, nothing breaks
• If innerHTML output is used again, we have an XSS

• Several examples shown by Heiderich et al. at CCS’13

IAS - Web Security

Study 3: The add that got me hacked

!43

• Recall this figure?

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

2

4

6

8

10

12 Average included domains

IAS - Web Security

3rd party involvement

!44

• Investigated 1,273 real-world exploits
• 835 caused by first-party code only
• 273 caused by third-party code only
• 165 as combination of first- and third-party code

• Additional problem
• Script delegation
• 3rd parties including further scripts

• We have seen inclusion chains with lengths up to 8

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

2

4

6

8

10

12 Average included domains

IAS - Web Security

Bonus Study: CXSS over the years [Usenix17]

!45

IAS - Web Security

Bonus Study: CXSS over the years [Usenix17]

!45

• Question:
• Is this a new phenomena?
• Was there a paradigm shift in application architecture that caused the rise of CXSS?

IAS - Web Security

Bonus Study: CXSS over the years [Usenix17]

!45

• Question:
• Is this a new phenomena?
• Was there a paradigm shift in application architecture that caused the rise of CXSS?

• Enter archive.org
• Full record of client-side code
• Especially relevant for us: Full JS code
• Hence, we can security test the past :)

IAS - Web Security

Client-Side Cross-Site Scripting over the ages

!46

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0%

2%

5%

7%

10%

12%

15%
domains vulnerable

IAS - Web Security

Client-Side Cross-Site Scripting over the ages

!46

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0%

2%

5%

7%

10%

12%

15%
domains vulnerable

IAS - Web Security

Client-Side Cross-Site Scripting over the ages

!46

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0%

2%

5%

7%

10%

12%

15%
domains vulnerable

IAS - Web Security

Client-Side Cross-Site Scripting over the ages

!46

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0%

2%

5%

7%

10%

12%

15%
domains vulnerable

Persistent Client-side XSS

IAS - Web Security

Persistent CXSS

!48

IAS - Web Security

Persistent CXSS

!48

• Server-side XSS is partitioned in two classes
• Reflected XSS
• Stored/persistent XSS

IAS - Web Security

Persistent CXSS

!48

• Server-side XSS is partitioned in two classes
• Reflected XSS
• Stored/persistent XSS

• These dimensions also apply to the client-side
• Up to this point, we only discussed reflected CXSS

IAS - Web Security

Persistent CXSS

!48

• Server-side XSS is partitioned in two classes
• Reflected XSS
• Stored/persistent XSS

• These dimensions also apply to the client-side
• Up to this point, we only discussed reflected CXSS

• Introducing Persistent CXSS
• The browser has mechanisms to persist data on the client-side
• This data can be read by JavaScript
• Thus, flows from the browser’s storage into the DOM could lead to code injection

Web Security

1. Attacker analyzes client-side
JavaScript code for
vulnerabilities

• searches for unfiltered usage of
attacker-controllable data (e.g., URL),
flowing to persistent storage

• searches for execution of persistent
storage
• example: cookie stores first visited

URL, is used in eval statement
later

!49

Persistent Client-Side Cross-Site Scripting

ht
tp
:/
/e
xa
mp
le
.o
rg
/

<h
tm
l>
..
.

<s
cr
ip
t>
vu
ln
()
;<
/s
cr
ip
t>

..
.<
/h
tm
l>

Web Security

1. Attacker analyzes client-side
JavaScript code for vulnerabilities
• searches for unfiltered usage of attacker-

controllable data (e.g., URL), flowing to
persistent storage

• searches for execution of persistent storage
• example: cookie stores first visited URL,

is used in eval statement later

2. Attacker tricks victim into visiting
URL with payload, e.g., in fragment
• data-persisting JavaScript is delivered to

client
• exploit payload is stored in persistent

storage

!50

Persistent Client-Side Cross-Site Scripting

http://example.org/# 
<script>attack()</script>

<html>... 

<script>vuln()</script> 

..</html>
http://example.org/

Web Security

1. Attacker analyzes client-side
JavaScript code for vulnerabilities
• searches for unfiltered usage of attacker-

controllable data (e.g., URL), flowing to
persistent storage

• searches for execution of persistent storage
• example: cookie stores first visited URL,

is used in eval statement later

2. Attacker tricks victim into visiting
URL with payload, e.g., in fragment
• data-persisting JavaScript is delivered to

client
• exploit payload is stored in persistent

storage

!50

Persistent Client-Side Cross-Site Scripting

http://example.org/# 
<script>attack()</script>

<html>... 

<script>vuln()</script> 

..</html>
http://example.org/

<script> 
attack() 
</script>

Web Security

1. Attacker analyzes client-side
JavaScript code for
vulnerabilities

2. Attacker tricks victim into
visiting URL with payload, e.g.,
in fragment

3. On every page visit, payload is
extracted from persistent
storage

• flow from storage to execution sink
• malicious payload is executed

!51

Persistent Client-Side Cross-Site Scripting

<html>... 

<script>vuln()</script> 

..</html>
http://example.org/

<script> 
attack() 
</script>

IAS - Web Security

Persistent CXSS - Sources

!52

• The set of relevant sources deviates from the known pattern
• (The sinks remain the same)

• document.cookie
• JavaScript API to read and write cookies that apply to the web document

• document.localStorage
• Key/value store for JavaScript

• IndexedDB
• structured storage API with indexing support

http://vuln.com

<script>
eval(getStorage());

</script>

attack();

1

2

3

Fig. 2. Persistent Client-Side XSS Attack

Prior works have already investigated the prevalence and
nature of reflected Client-Side XSS [32, 36, 55]. In these
cases, a reflected Client-Side XSS occurs whenever data
originating from the URL is insecurely used by JavaScript.
The URL can be accessed over several different APIs, e.g.,
location.href. In the following section, we outline the
differences between reflected and persistent XSS on the client
and explain the different attacker models we consider for a
Persistent Client-Side XSS attack.

III. PERSISTENT CLIENT-SIDE XSS

In this section, we discuss the notion of persistent Client-
Side Cross-Site Scripting, highlighting how the insecure use
of persisted data can be abused by an adversary to execute her
malicious code. We then relate this concept to its server-side
counterpart and introduce two attacker models, which enable
storing payloads in her victim’s persistence APIs, allowing for
a persistent XSS attack.

An XSS attacker’s goal is often to hijack the session of their
victim, i.e., steal the authentication cookies. This problem is
mitigated by the use of HTTP-only cookies, which ensure that
cookies cannot be accessed from JavaScript and are therefore
out of reach of the adversary. Additionally, the attacker can
also force the victim’s browser to perform certain actions, such
as post content. This attack becomes more powerful if the
attacker conducts a resident XSS attack [23], which leverages
the existing XSS to ensure that all links a user may visit
are also XSS-infested. However, once the victim closes the
browsing session, even this threat is eliminated. If, however,
the malicious payload is persisted on the client, i.e., in cookies
or Local Storage, the XSS attacker’s code is revived on every
subsequent load of the flawed site, even without the necessity
to add the payload to, e.g., the URL. Hence, this allows
the attacker to mount attacks such as JavaScript keyloggers2,
Cryptominers [11], or the previously outlined scenarios even
long after the initial attack has occurred. Especially in the case
of a network-based adversary, the danger is aggravated due to
the fact that cookies are shared between HTTP and HTTPS
sites. We discuss a particularly high-profile case we discovered
in our analysis in Section V-D.

A. Vulnerable Use of Persisted Data

Figure 2 shows the basic steps to a successful execution of
attacker-controlled code in a Persistent Client-Side Cross-Site

2e.g., https://blog.rapid7.com/2012/02/21/metasploit-javascript-keylogger/

var value = localStorage.getItem("entryPage");
document.write("start over");

// Assume adversary sets entryPage to
'><script>alert(1)</script>,!

document.write("<script>alert(1)</script>'>start
over"),!

Fig. 3. Example vulnerability involving a data flow from Local Storage to
document.write

Scripting attack. The vulnerable site hosts a JavaScript snippet
which extracts additional code from storage and subsequently
executes this code using eval (1). The browser accesses the
storage (2), retrieving the code to be executed. In the third
step, if this code is under the control of the adversary, the
malicious code is executed in the origin of the vulnerable site
(3). In this example, the data originating from Local Storage
was passed to eval in an unfiltered manner, indicating that
the actual purpose of this storage entry was to persist code.

Such vulnerable patterns are not specific to the scenario in
which code is persisted in Local Storage. In fact, the intended
purpose of Local Storage is to store data. However, in practice,
eval is also often (ab-)used to parse JSON [45] data, even
though secure alternatives exist. Moreover, storage can be used
to store unstructured data, which may be used in a flawed way.
For example, Figure 3 shows a snippet which uses stored data
in an insecure way. The purpose of this snippet is to extract
the URL of the page on which a user’s workflow started and
use it to create a link back to that URL. However, the value
extracted from storage is neither checked for its format nor
encoded to ensure that the extracted value cannot be abused
to add additional HTML markup. Specifically, if the adversary
gains control of the stored value, she can modify it to break
out of the a tag, and inject a new script element (see Figure 3).
We report on the specific patterns of such vulnerable flows we
discovered in our study in Section VI.

Web Storage is not the only feature that can be abused
for Persistent Client-Side XSS. The outlined attack can be
transferred to cookie sources as well. While cookies have only
limited storage, the size of each cookie is still sufficient to
exploit an unfiltered flow from a cookie. Although in general,
Session Storage allows to persist data on the client, it is bound
to a browsing window and deleted when said window is closed.
Hence, we do not consider Session Storage for our work, as its
short-term persistence does not add any capabilities a regular
XSS attacker lacks.

B. Differences From Persistent Server-Side XSS

Persistent XSS on the server side has been studied for
several years and is widely known. In one of the most recent
papers, Dahse and Holz [12] found several PHP-based applica-
tions to be susceptible to persistent XSS, including the popular
OpenConf submission system. Such vulnerabilities occur when
an adversary’s input is not filtered or encoded before being
written to persistent storage, such as a SQL database. A famous
example of such an attack is the hack of the Ubuntu forums
in 2013 [59]. Attackers leveraged a persistent XSS flaw in
the deployed forum software to take over an administrative
account, leading to a complete database compromise. The post-
mortem analysis showed the evidence for these actions, given

3

IAS - Web Security

Persistent CXSS in the wild [NDSS19]

!53

• Dedicated empirical study
• Alexa Top 5000
• Crawl two levels deep
• In total 12,489,576 web documents analysed

• In 8% of the examined origins we found at least one exploitable flow

URL Sources Cookie Source Local Storage Source
Sink Total Plain Fraction Total Plain Fraction Total Plain Fraction

HTML 11,388,607 10,161,040 89.2% 555,323 382,608 68.9% 2,180,680 2,149,839 98.6%
JavaScript 77,360 54,910 71.0% 535,047 522,205 97.6% 635,843 635,798 100.0%
Script Source 4,252,532 640,977 15.1% 1,458,687 256,034 17.6% 377,626 103,418 27.4%

Cookie 922,761 621,695 67.4% 31,391,553 12,615,945 40.2% 732,407 461,334 63.0%
Local Storage 890,808 878,139 98.6% 2,000,863 1,932,335 96.6% 66,635,820 66,175,494 99.3%

TABLE I. FLOW OVERVIEW, SHOWING HOW MANY DATA PARTS ORIGINATED FROM SOURCES (COLUMNS), ENDING IN THE SINKS OF INTEREST (ROWS).
BESIDES THE TOTAL NUMBER OF FLOWS, IT SHOWS THE ABSOLUTE AND RELATIVE NUMBER OF FLOWS WHICH ARE NOT ENCODED.

applied to them, indicating that this data appears to be trusted
by the developers of the JavaScript applications.

Considering the results of the use of tainted data in the
assignment of a script’s source, we find that a much smaller
fraction is used without encoding. This would seem to indicate
that additional care is taken by developers when incorporating
potentially attacker-controllable data in such assignments. The
pattern, however, is due to the use of such tainted values,
which are for the most part used in parameters to a URL.
Hence, applying a function like encodeURIComponent
merely ensures that the parameters are properly sent to the
server, and is not necessary to avoid injections.

In addition to the flows to directly exploitable sinks, we find
that more than 1.8M flows occurred from the URL to either
cookies or storage (the last two rows in Table I), with many
of them being unencoded. We also find evidence for numerous
flows from cookies to cookies, as well as from storage to
storage. This is to be expected, given that these are meant
to store state, which is modified at runtime with JavaScript. In
addition, we find that around 2M flows originate from cookies
and end in a Local Storage sink, whereas another 732,407 flow
in the opposite direction.

Note that the table shows absolute numbers, not a unique
set of flows. This is due to the fact that determining uniqueness
for these flows is infeasible. Earlier works [32, 36] used
the combination of sink, domain, and code location of the
sink access for uniqueness purposes. This, however, does
not guarantee unique results, given that if multiple parts of
an application’s code use the same wrapper function (e.g.,
jQuery’s html), all such flows would be counted as one.

Instead of identifying individual flows in the complete
dataset, we now focus on the number of domains with invo-
cations of HTML, JavaScript, and script source sinks. Table II
shows the result of this analysis, indicating how many domains
had any flow from cookies or Local Storage to a sink, as well
as how many of these contained unencoded data. Note that the
row Total is not a sum of the rows above, but rather a unique
count of domains—attributed to the fact that a domain may
have more than one type of flow. In total, we find that 1,946
domains in the 5,000 highest ranked sites make use of data
from persistence APIs in a flow to either HTML, JavaScript,
or a script’s source. Within the domains, 1,645 have flows from
cookies to sinks, and 941 use data from Local Storage in the
invocation of sinks. For us, however, not all these domains
are of interest, as we focus on those domains that have at
least one unencoded flow from the persistence APIs to a sink.
Therefore, in the following, we analyze the 906 cookie and 654
Local Storage domains with unencoded flows in more detail.
This amounts to 1,324 unique domains for our analysis.

Cookie Local Storage
Sink Total Plain Expl. Total Plain Expl.

HTML 496 319 132 234 226 105
JavaScript 547 470 72 392 385 108
Script Src 1,385 533 17 626 297 11

Total 1,645 906 213 941 654 222

TABLE II. NUMBER OF DOMAINS WHICH MAKE USE OF A
COOKIE/STORAGE VALUE IN A SINK (“TOTAL”), ON WHICH AT LEAST ONE

OF THESE FLOWS IS UNENCODED (“PLAIN”), AND ON WHICH AN
ATTACKER COULD THEORETICALLY EXPLOIT SUCH A FLOW (“EXPL.”).

B. Exploitable Flows from Persistent Storage

In order to determine how many of these flows could, in
fact, be exploited, we first determined how many domains
would be attackable by an unlimited adversary, i.e., an ad-
versary capable of modifying cookies or Local Storage for
arbitrary origins. To that end, we used a Chrome extension to
first visit each URL in question, modify the storage accord-
ingly, and reload the site (see explanation in Section IV-C1).
If on the second page visit, the payload is triggered, we mark
the site as exploitable. In total, we found that 418 of the
1,324 domains we considered in fact contained an exploitable
flow from cookies or Local Storage. The exact number of
domains for the combination of sinks and sources is shown
in Table II in the respective third columns. Note that the sum
of all exploitable domains in the table amounts to more than
418, as several domains suffered from more than one flaw.

We find that for HTML, 132 of 319 domains with un-
encoded flows from a cookie were exploitable, whereas 105
of 226 domains were determined to contain an exploitable
flow from Local Storage to an HTML sink. This high ratio
of domains, i.e., 40–46%, does not hold up for JavaScript
sinks, where 72 of 470 (15%) and 108 of 385 (28%), re-
spectively, were vulnerable. For both sink types, the data
indicates the fraction of exploitable sites is higher for Local
Storage than for cookie sites. In our experiments, we found
this to have two reasons. First, since cookies are sent along
to the server in every HTTP request, they are subject to
inspection by deployed Web Application Firewalls (WAFs).
Although we did not specifically record when a page was
not loaded due to our cookies containing JavaScript or HTML
markup, sampling sites on which our payload had not triggered
frequently led to error pages clearly caused by WAFs. Second,
our payload frequently required either ; (for JavaScript) or
= (for HTML) characters to work. Whenever a JavaScript
program accesses the document.cookie property to gain
access to the cookies, all cookies are extracted at once, in
the format key1=value1;key2=value2. Similarly, when
setting a cookie via JavaScript, the ; character carries a special

8

IAS - Web Security

Key differences between reflected and persistent CXSS

!54

• Persistent CXSS requires two flows
• One into the storage
• One form storage into the DOM

• But:
• The two flows don’t have to be connected
• They don’t even have to occur in the same web document

• In fact, persistent CXSS can be abused to transform a reflected XSS into the
persistent variant

• Furthermore, Cookie-flows expand the attacker model considerably
• Cookie tossing, network attackers, …

IAS - Web Security

Resolving persistent CXSS

!55

• Unlike reflected CXSS, persistent CXSS is a result of indented functionality
• Local caching/maintaining of information

• A problem arises, if the cached information is required to contain code
portions
• Cached JavaScript libraries, cached HTML snippet, cached configuration, containing, e.g.,

URLs

• In such cases encoding breaks the  
functionality

• Cleansing the storage of affected users is difficult

var hostname = localStorage.getItem("hostname");
var script = document.createElement("script");
script.src = hostname + "foo.js";
document.body.appendChild(script);

Fig. 9. Example vulnerability involving a stored hostname

b) Pure HTML: On eleven domains, we identified
HTML fragments in the client-side storage that did not contain
any interwoven JavaScript, neither as script-tags nor inline
event handlers. These cases can be secured by client-side
sanitization that allows (harmless) HTML syntax but robustly
removes all JavaScript from the code. For instance, the well-
established DOMPurify [20] library offers such functionality.
Alternatively, structure-based approaches like BLUEPRINT can
be used to ensure that only benign markup is used [58].

c) HTML/JavaScript Mix: Five sites in our dataset
persisted HTML code that also contained inline JavaScript. In
such cases, none of the available defensive coding measures
can be applied, as it is not possible to determine which stored
JavaScript code originated from an attacker and which from
the developer. Hence, securing these sites requires removing
the insecure feature altogether.

D. Storage of Configuration Information

Finally, in 28 cases, we observed that hostnames were
stored on the client side and then used within the application to
reference further resources, as depicted in Figure 9. In general,
this pattern appears to be a case of client-side configuration
with respect to resource location, e.g, for the purpose of client-
side load balancing. To securely implement this functionality,
a whitelist check for the retrieved values can be introduced,
as the set of legal values is probably bounded. One prime
example of a feasible whitelist check is the case of Google’s
Firebase when using the Realtime Database Feature [16]. On
an abstract level, Firebase periodically requests resources from
a host which is stored in the Local Storage as depicted in
Figure 9. Investigating these cases, we observed that each
of the stored hosts was a subdomain of firebaseio.com, thus
allowing the library to simply check the second-level domain.

E. Applicability of General Defenses

The risks of a persisted malicious payload being executed
code on the client side have been acknowledged by standards
bodies. Specifically, the W3C has proposed the Clear-Site-Data
response header [64]. This mechanism allows site operators
to truncate all client-side storage and moreover shut down
all JavaScript contexts to ensure that an attacker-controlled
context is unable to re-poison the storage. However, making
use of this mechanism regularly inevitably destroys the purpose
of having client-side storage, be it code or configuration data
storage. A security-aware user can achieve the same effect by
completely removing the browser profile before starting the
browser or by making use of equivalent browser features. Other
research approaches focused on the integrity of cookies by
proposing Origin Cookies [4]. These would, given appropriate
deployment, prevent exploitation by the Network attacker on
all HTTPS origins due to separated cookie storage (analogous
to the Local Storage). Additionally, the Web Attacker would

need a reflected XSS on the exact origin, not just on the same
domain. Browser vendors, however, favor prefixed cookies [65]
as opposed to Origin Cookies [5]. These prefixed cookies make
sure that secure cookies can only be set from secure origins
(i.e., HTTPS origins) and only for a specific origin (i.e., the
cookie must have been set without the Domain attribute).
Although these are implemented in Chrome and Firefox6,
we only found that two of the 5,000 domains we analyzed
use these in the first place (and they did not interfere with
our attacks). Moreover, this naturally does not impair a Web
Attacker and does not help secure Local Storage.

There are promising approaches which revolve around a
finer-grained origin construct in the form of either Isolated
Origins [52] or Suborigins [62], which would allow developers
to further mitigate the risk of XSS exhibited by, e.g., some
legacy portion of their Web application. Another approach
to tackle the problem of Client-Side XSS is the concept of
Trusted Types [8]. Trusted Types require developers to mark
any data which contains code intended to be executed in a
sink as safe, which allows these sinks to discard any code not
marked as safe. This prevents an attacker from exploiting flows
which developers intended to carry only data. This concept,
however, is only in its early development stages as of now.

VII. DISCUSSION

Here, we discuss limitations of our analysis and give an
outlook on potential future work in this research space.

Drawbacks of Dynamic Analysis — As with any dynamic
analysis, our approach does not guarantee discovery of the
entire application functionality. Specifically, our crawlers do
not log in to any application, and have a fixed depth when
crawling. Hence, our analysis cannot cover all available pages,
and therefore, flows. Moreover, even if our crawlers were able
to visit every available URL, the analysis would not guarantee
code coverage, given that certain actions may only be triggered
by user action. Additionally, our taint tracking engine only
covers explicit flows. Hence, if an implicit conversion is
applied to the input data (e.g., base64 decoding), our engine is
not able to track the flow of data anymore, resulting in missed
exploitable flaws. Moreover, our analysis cannot account for
modifications in the flow of data, e.g., removal of quotes.
While a scenario may exist in which such a filtered flow is
exploitable, we leave the analysis of such flows to future work.

Exploitability in Current Browsers — While the exploitability
of flows originating from storage does not depend on the
browser, the susceptibility of a site to a reflected Client-Side
XSS varies between browsing engines. Specifically, Firefox
automatically encodes all parts of the URL when accessed
via the location object; Chrome did not do so until version
657. Since version 65, however, the auto-encoding has changed
such that the URL fragment is also encoded, meaning that
exploits which target an unfiltered and unmodified flow from
the fragment to a sink will not be exploitable anymore. To
validate the discovered reflected Client-Side XSS flaws, we
used an older version of Chromium, which does not encode
the fragment. Note, however, that Microsoft’s Edge also does

6https://www.chromestatus.com/feature/4952188392570880
7https://bugs.chromium.org/p/chromium/issues/detail?id=803103

11

Combating CXSS

IAS - Web Security

Combating CXSS: Secure programming (I)

!57

• Problems originate from use of insecure APIs
• eval, document.write, innerHTML
• and the use of user-provided input in them

• Depending on the context, functionally equivalent APIs exist
• document.createElement, element.innerText
• JSON.parse

function writeURLInsecure() {
 document.write("<p>The current URL is: "  
 + location.href + "</p>");
}

function writeURLSecure() {
 var p = document.createElement("p");
 p.innerText = "The current URL is: " + location.href;
 document.write(p.outerHTML);
}

IAS - Web Security

Combating CXSS: Secure programming (II)

!58

function loadAdvertisementInsecure() {
 document.write("<script src='http://ad.com/?referrer=" + location.href + "'></script>");
}

function loadAdvertisementSecure() {
 var script = document.createElement("script");
 script.src = 'http://ad.com/?referrer=' + location.href;
 document.body.appendChild(script);
}

• element.src ensures that attacker-controllable data can only be in src attribute

IAS - Web Security

Combating CXSS: Secure programming (III)

!59

function parseJSONInsecure(json) {
 var object = eval(json);
}

function parseJSONSecure(json) {
 var object = JSON.parse(json);
}

function registerGlobalInsecure(key, value) {
 eval(key + " = '" + value + "'");
}

function registerGlobalSecure(key, value) {
 window[key] = value;
}

• Depending on the desired use, either
• use JSON.parse
• use object[key] = value notion

IAS - Web Security

Combating CXSS: Client-side sanitization

!60

• On the server-side the main defence against XSS is output encoding

• The same works on the client-side

• Unfortunately, the browser does not offer native encoding/sanitizing
functionality
• URIencode() and escape() do not catch all cases
• R.I.P. IE’s toStaticHTML()

• Building your own encoder is not without pitfalls
• Currently best option: DOMPurify from Cure53
• https://github.com/cure53/DOMPurify

IAS - Web Security

Combating CXSS: Content Security Policy

!61

• Content Security Policy is a browser-based standard to stop XSS exploits
• Mitigates exploits but does not stop injection
• Declarative policy, set by the server, enforced by the browser

• A strong CSP is highly effective against CXSS
• But don’t allow: unsafe-line, unsafe-eval and strict-dynamic

• More details tomorrow at 11:00 in my other talk

IAS - Web Security

Combating CXSS: Trusted Types

!62

• New proposal from Google
• Typed DOM APIs that do not accept strings
• Instead “templates” have to be created
• Secure creation of these templates allow reliable code audit

const templatePolicy = TrustedTypes.createPolicy('template', {
 createHTML: (templateId) => {
 const tpl = templateId;
 if (/^[0-9a-z-]$/.test(tpl)) {
 return `<link rel="stylesheet" href="./templates/${tpl}/style.css">`;
 }
 throw new TypeError();
 }
});

const html = templatePolicy.createHTML(location.hash.match(/tplid=([^;&]*)/)[1]);
// html instanceof TrustedHTML
document.head.innerHTML += html;

Summary

IAS - Web Security

Summary

!64

• Client-side XSS is surprisingly common
• In fact, Google considers it to be the most relevant class of XSS problems

• The JavaScript execution model makes finding non-trivial flows difficult

• Persistent CXSS adds another dimension to the problem
• Backdoored intended functionality, extended attacker model

• Methodology for secure development and mitigation of CXSS exist
• But have to applied correctly

Q&A

